h .
Fermilab
T™™M-1095

2320.000

PASCAL AND FORTRAN COMPARISONS FOR THE
PDP-11/34 AND VAX 11/780

A. M. Waller

March 1, 1982

TM-1095

PASCAL AND FORTRaAN CUOMPARISONS FOR THE PDP-11/34 AND Vax 11/78B0 Page 1
Introduction

I. Introduction

The aAccelerator Contrel System’'s new host computer
configuration employs a mixture of PDP-11/34°s and VAX
11/7807°s. PMost spplication programs will be written in a
high level language for eiscution on the PDP-11/34. Tuo
high level language compilers will be available to the
application programmer for the development of programs
targetted for the POP-11/34. These will be FORTRAN IV-PLUS
and [OMEI PaBCAL. Some applications will obviously be more
attractive or convenient to code in FORTRAN, others in
PASCAL.. However, there will be a2 tlass of applications for
which the "correct”™ or “best” choice of compiler is not
obvious. In particular, there will be applications for
which +the execution speed and/or giecution storage
requirements are at a premium. In such cases it is
necessary to know the relative propevrties of the target code
produced by the two compilers,

Similar questions arise naturally for applications
which are targetted for the VaX 11/780., where the cheices of
VAX—11 PABCAL and VAX-11 FORTRAN are available. This memo
summarizes the results of tests that were made to compare
the relative execvution speads and relative storage
requirements of PASCAL and FORTRAN for analogous facilities
(i. e. comparable arithmetic expressions. DO loops vs.
WHILE loops. procedure calls, getc.), The Tesults are
collected under four seperate headings:

o Efficiency comparisons of MBI PABCAL and FORTRAN
IV-pPLUS

o Efficiency comparisons of VaX-11 PaABCAL and VAX-11
FORTRAN

o Comments, suvggeéstions and hints on vsing OMBI PABCAL in
compatibility made on the WaAX 117780 +for programs
tarrgetted for a PDP-11/34

o Commenis, suggestions,and hints on wsing VAX-11 PaABCaL
for native mode programs

The comparisons described hevre should provide the
application programmer with spome guidance on some aof the
penalties he can expect %o pay in wusing & particular
compiler for many common operaltions. These comparisons do
net claim to illusztrate all the relevant differences between
the compilers in gquestion.

TM-1095

FASCAL AND FORTRAMN CUMPARISONE FOR THE PDP-11/34 AND VaX 11/7B0 Page &

Introduction

and

i. 0

the

R

L3

Ii. Comparison Methodoloagy

The PABCAL and FORTRAN comparisons for the PDP-~11/34
the VAX 11/780 were done in three siages

Cursory inspection of code generated for various common
aspects of both languages. '

WHETSTONE timing test.

Modified WHETSTONE timing program used to measure the

non—weighted time of each module comprising the
WHETETONE test.

CURBORY INGPECTION

A non-runnable piece of coding was generated to inspect
following statements/expressions:

Arithmetic expressions with variables and constants.
Assignment expressions
Integer arithmetic {multiply,divide, subtract)
Exponentistion {(net available in OMSI PAGCAL)

Logical expressions.

IF-THEN-ELBE construct (only IF-THEN in FORTRAN
IV-PLUS?

relational constructs

L.oop expressions.
WHILE-DO/DO-WHILE (not available in FORTRAN IV PLUSS
FOR-TO-DG/DO

Procedure and function call statements
CABE/ (computed :GUTO statments.

Memory allocstion of arrays

BDOLEAN/LOGICAL®]

WORD/INTEGER®#Z2

CHAR/CHARACTER {(CHAR wvs. BYTE for FORTRAN IV-PLUS)
* REAL/REAL=#4

TM-1095

FASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780 Fage 3
introduction

2.0 WHETSTINE TIMING

The WHETSTONE performance test is a special Ysynthetic®
benchmark program. It was designed to take into account
machine architecture and compiler efficiency. Since the
architecture of the machines remains the same, this test
gives a good measure of PaABLAL vs. FORTRAN compiler
efficiency for the PDP-11/34 and then the VAX 11/780.

The benchmark Teports results in Whetstone
instructions/second. These "instructions” are only remotely
connected with physical machine instructions {hence
synthetic). The Whetstone instruction is a logical
instruction such as "take integer resulit” or “goto” ar 4
Yecall® block. These ‘“instructions” may comprise several
physical machine instructions. There are 11 modules in the
program. Each module represents & typical, common group of
statements that may well exist in a scientific program. To
further simulate veality these modules are weighted based on
statistics gathered about the style af scientific
programming used at one institution.

The complete article and original ALGDBL program which

heralded the age of Whetstone performance measurements is
available in the FERMILAB library. See below.

.0 MODIFIED BENCHMARK

9%]

After looking at compiler generated code and Whetstone
performance numbers, what else is there to do?

It would be interesting to see where the inefficiency
of @ compiler is when it is running the Whetstone test. The
Whetstone program was modified to report timing wvalues Ffor
each of the modules. This proved a useful tool in a feuw
isolated cases where a particular loop timing for a compiler
did not follow the general trend of timing differences. A
look at the generated code revealed introductions of short
cuts and other interesting side effects dus to optimization.

A Bynthetic Benchmark by Curnow and Wichmann
THE COMPUTER JOURNAL Vol. 19, No. 1 1976

TM-1095
PASCAL AND FORTRaN COMPARIBONS FOR THE PDP-11/34 AMD Vax 11/780 Page 4
Efficiency comparisons of OMZT PASCAL and FORTRAN IV~-PLUS

I1I. Efficiency comparissons of DMSI PASCAL and FORTRANM IV-PLUS

The conclusions reached in %this section are a result of
the test programs that appear in Appendices A and B. The
modified Whetstone test is not listed since it is almost the
same coding as the Whetstone test program. For the modified
Whetstone test; coding was inserted Lo measure the time it
took to execute sach of the major loops

The second number in the FUORTRAN IV-RPLUS column in
Table 1 below indicabtes the amount of coding generated with
constants defined in PARAMETER statements instead of DATA
statements.

PASCAL. takes a few more bytes in grder to store a value
into the wvariable on every assignment statement. FORTRAN
will lzave wvalues in registers until such time as 1%t is
needed to be stored into the variable. The philosophy of
OMSI PASCAL is to disable variable assignment to registers
in the main program i€ any external procedures are
referenced {a@s in my test program). This is so because *the
compiler c¢an not determine what variables may be used by
such routines,

There are cases where the PARAMETER statement may cause
more «coding to be generated {(as in the assignment block
below). This is because PARAMETER forces the compiler to
generate an instruction wvsing a literal every time rather
than optimizing on a register—to-register move. This 1is
strictiy a result of the compiler algorithms implemented o
generate code. It serves only to show that an optimizing
compiler c¢an be VEricked® into Yno-optimization” on some
local instruction groups: in general. the results in
savings using PARAMETER statements is examplified in the
IF-THEM block below.

<hough PARAMETER statements will generaste literals,
arithmetic expressions are not reduced during compile time.
That is, the arithmetic coding is generated and executed at

run Ltime. OMSI PASCAL does reduce constants in arithmetic
gxpressions at compile time {(called constant Ffolding). in

the IF-THEN block below whevre PAGBCAL is less efficient in
code generation for assignment statements it makes up for in
constant folding for a net gain on generated compiled code

I+ the PABCAL procedure call is made and the argument
value is in a register the number of bytes of code generated
will be Z2#N. If the arvgument value is storved then 4%MN bytes
are generated where N is the number of arguments. If the
procedure is an external procedure only 2N+ 4 bytes of

PAGCAL AND FORTRAN COMPARISBONS FOR THE PODP-11/34 a&ND WVaX 11/

Efficiency comparisons of OMBI PASCAL and FORTRAN IV-RPLUS

TM-1095
780 Page 5

coding are generated. If the procedure is NONPABCAL more

interface code 15 generated and & jump to

a FORTRAN

intertface routine is made. Thus the first set of numbers

for the CALL statement under PABCAL are for the

value being in the register. The second set is
argument values. The first number in each set
PAGCAL external procedure. The second number

NON-PASCAL external procedure.

The computed GOTO for FORTRAN regquires more
than a PASBCAL statbtement.

A listing of fthe FORTRAN code used to produce
below appears in Appendix A,

argument
for stored
is for a
is for a

overhead

Table 1

TM-1095
PASCAL AND FORTRAN COMPARISONS FOR THE FDP-11/34 AND VAX 11/780 Fage &

Efficiency comparisons of DMSI PASCAL and FORTRAN IV-PLUS

TABLE 1
TABLE OF COMMON LANGUAGE ELEMENTS FOR OMBI PASCAL AND FORTRAN IV-PLUS

PABCAL FORTRAN IV-PLUS
ARITHMETIC AND
ASSIGNMENT
BLOCK 38 bytes 34/36 bytes
IF-THEN
BLOCK 4¢ bytes &O0/744 bytes
FOR-TO~-DG/DO
SHELL i2 bytes 12 bytes
CaALL ‘ -
STATEMENT 28N+4 ZuN+18 bytes 8 bytes

CASE/ {computedGOTO
SHELL

J#N+4 4xN+18 bytes

32 bytes

TM-1095
PAGSCAL AND FORTRAN COMPARIBUNS FOR THE PDP-11/34 AND VaX 11/780 Page 7
Efficiency comparisons of OMEI PASCAL and FORTRAN IV-PLUS

The only advantage of PABCAL PACKED arrays is in the
TYPE BOOLEAN. For example; a PACKED array [i..8,1..321 OF

BOOLEAM will allocate only 32 bytes of memory. The same
DIMENSIONed array wusing LOGICAL#%1 in FORTRAN will allocate
1922 bytes of memory. Therefore PARCAL offers a 160 byte

savings in this example.

Using the Whetstone program as & “typical® program
the FPollowing statistics were compiled #from the load maps
for total memory requirements

The last three items in Table 2 below would need to
have the word allocation modified in the Accelerator Control
System. These items would be replaced by in-house written
1/0 for our real~time agpplications.

While net all of the iﬁitialization can go, such items
as [OPEN/CLOSE and common 170 routines may disappear or take
on smaller procedure sizes.

For I/0 formst processing., PABCAL also ‘includes the
write integer and write Teal routines. Fortran appears to
have read/write vroutines for integev.real. Ilogical as
complete packages. Thus 1Ff one is only writing integer in
FORTRAN the package for rTeading as well as writing integer
is loaded. In both PASCAL and FORTRAN only the necessary
conversion routines are loaded. In-both PASCAL and FORTRAN
the gemneral input and general output drivers are loaded

For PABCAL, the common work area is basically HEAR/STACK
storage. Although 2048 words were explicitly allocated here
for HEAP storage. less could have been allocated. The 2048
words is a default minimum. The HEAF area will alwayz need
to be available for PABCAL if for nothing more fhan the
stack. The size of the stack will vary from application to
application and is principally determined by the maximum
depth +to which procedures are called. Heap is currently
used for I/0 control blocks as well as allocating dynamic
memory when the procedure NEW is called. Heap is freed
whenever a file is rlosed or whenever the procedure DIGPOBE
is called.

TM-1095

FASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780 Fage 8
Efficiency comparisons of OMBI PASCAL and FORTRAN IV-PLUS

TABLE # .
LOAD MaP TABLE OF COMPARIGUNE FOR OMSI PABCAL AND FORTRAN IV-PLUB

S o o e aet e Thew Eoe Tar® ottt (e S T e stte T anit S St iemas fees Y108 Stwee 79 ittt v T4 Y SR I i M s T i ria s

WHETSTONE
CODE+DATA 1227 words i284 words

MATH ROUTINES 401 words 505 words

INITIALIZATION

OPEN/CLOBE

COMMON I/0 RTNG.

ERROR REPORTING

ROUTINES AND

SUPPDORT ROUTINES

SUCH A5 "SECND® 3776 words =906 words

I1/0 FORMAT
PROCESSING 1005 words 1387 words

COMMON WORK AREA

LOGICAL UNIT TABLE

FCS BUFFER AREA

OBJ. TIME FORMAT BUFFER

ETC. . ETC. 2144 words 1878 words

TM-1095

FASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAKX 11/780 Page 9
Efficiency comparisons of OMSI PASBCAL and FORTRAN IV-PLUS

Table 3 below gives the modified and normal Whetstone
benchmark times. The lWhetstone benchmark indicates that
OMEI PASCAL is approximately 14% less efficient than FORTRAN
IV-PLUS.

Looking at the individual loop timings, only one loop
time is grossly different. That one is in PABCAL loop
number 9 with avrray referencing via procedure calls. (4
listing of the PABCAL source code is given in Appendix Bl
This warrented an investigation.

It turns out that the two other local procedures used
in the Whetstone test loops do not require full register use
{registers RO-REB). One procedure uses the floating
registers and the other only uses R3I and RS In this one
pardiculasr procedure vegisters RO-R3 are wsed Ffor rapid
indexing of array elements. A full context save of
registers RO-R3 i1s done at the entry of this procedure and a
restore i3 done at the end of the procedure. FORTRAN need
not do this since it is not re—entrant. A quick check of
the save and 7restore rvoutines verifies that each time the
procedure in loop number 9 is called +there 1is an added
overhead of +70 microsecands. The actuval bedy of coding
generated for the FASCAL procedure looks wvery similiar to
the coding generated by the FORTRAN compiler (conceptuaily)

Loop number 8 in PABCAL is the second large wvariation
and this is dwe fto the fact that three arguments must be
moved #from local storage and moved to the stack before the

procedure is called. This vequires 12 bytes of coding for 3
move instructions so calling this procedure does take more
overhead.

A listing of the PASCAL version of the Whetstone test
appears in Appendix B.

TM-1095

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 aND VAX 11/780 Page 10
Efficiency comparisons of OMBI PASCAL and FORTRAN IV-PLUS

TABLE O

##4%E FORTRAN #se#s

EXECUTION = 0. 00 MICRO-GEC.
EXECUTION = 254, &8 MICRO-SEC.
EXECUTION = 1612, 00 MICRO-SEC.
EXECUTION = 36, 31 MICRO-SEC.
EXECUTION = O. 00 MICRO-SEC.
EXECUTION = 140. 48 MICRO~BEC.
EXECUTION = 3377. 5% MICRO-SEC.
EXECUTION = 145. 42 MICRO-SEC.
EXECUTION = &5. 83 MICRO~SEC.
EXECUTION = 0. 00 MICRO-SEC.
EXECUTION = 827. 97 MICRO-BEC.
ALL DONE

#uans PALGCAL ###xs

EXECUTION = 0. 00 MICRO-SEC.
EXECUTION = 25%9. 41 MICRO-SBEC.
EXECUTION = 1994, 50 MICRO-SEC.
EXECUTION = 33. 51 MICRO-BEC.
EXECUTION = G, 00 MICRO-BEC.
EXECUTION = 1534. 44 MICRO-BEC.
EXECUTION = 3260. 42 MICRO-BEC.
EXECUTION = 16%. 15 MICRO-BEC.
EXECUTION = 145. 02 MICRO-BEC.
EXECUTION = 0. 00 MICRO-BEC.
EXECUTION = 8&0. 44 MICRO-SEC.
ALL DONE

%%%%%%*%%%**%%ﬁ-%%ﬁ*%%%%%%%%ﬁ-%%-ﬁ-%%%%%%%%%%-ﬁ-%%%%*%*-ﬁ*-ﬁ-%%*%

LOGOrR1 = NIL

LOGR2 = ARRAY REFERENCING IN-LINE

LOOP3 = ARRAY REFERENCING ARRAY A PROCEDURE PARAMETER
LOOP4 = CONDITIDNAL JUMPS

LOOPS = NIL

LOOFRS = INTEGER ARITHMETIC

LOOF7 = TRIG. FUNCTIONS

LOOP8 = PROCEDURE CALL

LOOPT = ARRAY REFERENCING VIA PROCEDURE

LOOP10= NIL
LOOP11= BTANDARD FUNCTIONE

PASCAL AND FORTRaN COMPARISONG FOR THE PDP~11/34 AND vaX 11/780
Efficiency comparisons of OMSI PASCAL and FORTRAN IV-FLUS

TABLE 3 {(continued}

#¥e#s BENCHMARK RESULTE ##eas

FORTRAN:

BENCHMARK EXECUTION TIME IB 2. 1411 MINUTES.
EXECUTION = 233524, 56 WHETSTONE INSTRUCTIONS/SEC.
ALl DORNE

PASCAL:

BENCHMARK EXECUTION TIME IS 2. 5442 MINUTES.
EXECUTION = 1946526, 00 WHETSTONE INSTRUCTIONS/SBEC.
ALL DONE

TM-1095

Fage 11

TM-1095

PASCAL AND FORTRAN COMPARISONG FOR THE PDP-11/34 AND VAX 11/780 FPage 12
Efficiency comparisons of VAX PABCAL and VaX FORTRaN

IV, Efficiency comparisons of YAX PASCAL and VAX FORTRAN

The conclusions reached in this section are a result of
the test programs that appear in Appendices € and D The
modified Whetstone test is not listed since it is almost the
same coding as the Whetstone test program. For the modified
Whetstone test; coding was inserted to measure the time it
took to execute each of the major loops.

The second number in the two VAX FORTRAN columns in
Table 4 below indicate the amount of coding genervated with
constants defined ass PARAMETER statements instead of DATA
statements.

As tan be seen from Table 4 below the PARAMETER
statement can greatly reduce the amount of code generated
In all cases (optimized or non—optimized) VAX FORTRAN also
does constant folding so that if constants appear in an
arithmetic expression the compiler will reduce the result to
a literal value. VAXK PABCAL does not use constant folding.
This is Jjust the opposite of OMESI PASCAL and FORTRAN IV-PLUS
for the PDP-11/34s. Optimization in VaX FORTRAN is for
execwution speed and the compiler will generate the necessary
code to move values or addresses into registers before that
code which comprises the body of the higher level language
statement is executed. This can end up in the generation of
more bytes of code as shown in the assignment block below.

Although execution is faster via register. the compiler
mechanics implemented to generate the opltimized cuode can be
"tricked” into generating code which actually executes
slower. This will be pointed out later. In general though
the compiler optimization algorithms can realize an overall
gain in efficiency of approsimately 4%

The formula given below For the amount of coding
generated by a VAX PASCAL call statement is general and not
totally applicable. The formuls gives one a general idea on
approximately how much code gan he generated. It depends on
how the compiler will generate coding (registers,memory
reference; literals, stc. . However, +18 bytes are generated
for every argument that is & string. This is because VAX
PASCAL must set up the string descriptor on the stack before
the procedure call. VAX FORTRAN just references a +fixed
list.

A listing of the PABCAL code used to proeduce Tabkle 4
below appears in Appendixz <.

TM-1095

PABCAL AND FORTRAN COMPARISONS FOR THE PDP—-11/34 AND VAX 11/780 Page 13
Efficiency comparisons of VAX PASCAL and VAX FORTRAN

TABLE 4
TABLE OF COMMON LANGUAGE ELEMENTE FOR VAX PABCAL AND VaX FORTRAN

FASCaL. FORTRAN
optimized non-optimized

ARITHMETIC AND
ASTIGHMENT
BLOCK 47 bytes 30721 bytes 44/17 butes
IF-THEN-ELSE
BLOCK 41 bBytes 28/24 hytes 38/2% bytes
WHILE-DD/DD-WHILE
SHELL B bytes 7 bytes B bytes
FOR-TO~D0/D0
BHELL 15 bytes i5 bytes i3 bytes
Call
STATEMENT see formula 8 bytes g bytes

below
CASE/{computed)GOTO
SHEILL 28 bytes 27 bytes 27 bytes

EL
18#5 BYTES
+ G¥{N-13 + 18#8 BV;ES

Z &2
Ol H
P R]
&0
ot b £

Where N is the number of paramsters passed
Where § is the number of string descriptor arguments
passed.

TM-1095

PAGCAL AND FORTRAN COMPARIGONS FOR THE PDP-11/34 AND VAX 11/7BO0 Page 14
Efficiency comparisons of VAX PASBCAL and VAX FORTRAN

The advantage of VAX PASCAL PACKED arrays is identical
to the treatment given in the PDP-11/34 section of this
paper.

The length of individual 1library sections (such as
MATH, 170, etc.) on a3 VAX VMES load map is impossible since

the library is sharable. Table 5 is what can be shown for
the Whetstone benchmark; again wusing this program as
"typical”.

TABLE &

LOAD MAP TABLE OF COMPARISBONS FOR WAX PASCAL AND VAX FORTRARN

FAaGCAL FORTRAN
WHETSTONE
CODE+DATA 3901 bytes 2357 bytes
FASSIOBARIC 2704 bytes " o e e it o o s
FASSIOOUTRPUT 1330 bytes et ot s e o i s o e

VIRTUAL MEMORY
ALLOCATED 119296 bytes 113664 bytes

TM-1095

PABCAL AND FORTRAN COMPARIGONS FOR THE PDP-11/34 AND VAX 11/780 Page 13
Efficiency comparisons of VAKX PASCAL and VAX FIORTRAN

Table & below gives the modified and normal Whetstone
benchmark times. The khetstone benchmark indicates that VAX
PASCAL is approximately 404 less efficient +than optimized
VAL FORTRAN.

Looking at individual loop timings; & passing comment
will be made about loop number B in non—optimized WaX
FORTRAMN. {A& listing of the FORTRAN source code is given in
Appendix DI In this particular circumstance the optimizer
which produced code to load variables into registers must,
at the end of the routine, gensrate code to load the results
back into memory locations. This *takes extra code but,
unfortunately, in this circumstance also extra time. The
non—-gptimized code Just generates memary referencead
instructions so i1t need not go through the extra storage
steps. Here the amount of code produced was small so the
effects of memory ws. register speed is not well taken
advantage of.

It will be noted that VAKX PASBCAL loop numbers 7.8, %, and
11 are markedly siower than VAX FORTRAMN All these loops
make procedure calls. WVAX FDORTRAN takes advantage o0f its
non-re-~entrant nature and paszses a local argument list via 2
CALLEG instruction. There is no overhead of pushing
arguments upon the stack before execution of the CALLG
instruction. For math routines a special entry point is
Jumped to for WVWAX FORTRAN via the jump to subroutbtine
instruction JEB thus reducing overhead even more. The loop
timings show that this special VAX FORTRAM entry reduces
overhead by about 3. 5% The inefficiency in VAX PASCAL is
due %o having to push arguments on the stack before using
the CALLS instruction. ‘

A listing of the FORTRAMN wversion of the Whetstonme test
appears in Appendix D.

: TM-1095
FASCAL AND FORTRAN COMPARISONS FOR THE FDP-11/34 AND VaX 11/780 Fage 1é
Efficiency comparisons of VAX PABCAL and VAaX FORTRAN
Ta&BLE &

#wwus OPTIMIZED FORTRAN ####%

EXECUTION = 0. 00 MICRO--BEC.
EXECUTION = #9. 79 MICRO~BEC.
EXECUTION = 23%. 88 MICRO-8EC.
EXECUTION = 7. &7 MICRO-BEC.
EXECUTION = 3. 00 MICRO-SEC.
EXECUTION = 3. 32 MICRO-SEC.
EXECUTION = 2%96. 30 MICRO-BEC.
EXECUTION = 40. 04 MICRO-BEC.
EXECUTION = 27. 17 MICRO-BEC.
EXECUTION = .00 MICRO-BEC.
EXECUTION = #8. 72 MICRO-BEC.
ALL DONE

#wwad NON- OPTIMIZED FORTRAN ##ssssn

EXECUTION = 0. 00 MICRO-BEC.
EXECUTION = 33. 48 MICRO-BEC.
EXECUTION = 393, &6 MICRO-BEC.
EXECUTION = 11. 90 MICRO-BEC.
EXECUTION = G. 00 MICRO-BEC.
EXECUTION = 3%7. 80 MICRO-SBEC.
EXECUTION = 99, 51 MICRO-BEC.
EXECUTION = 38, 24 MICRO-BEC.
EXECUTION = =&. 78 MICRO-SEL.
EXECUTION = Q. 00 MICRO-BEC.
EXECUTION = 8%. 33 MICRO-SEL.
ALL DONE

#iasn PASCAL NO OPTIMIZATION AVAILABLE #s#s#

EXECUTION = G. 00 MICRO-RBEC.
EXECUTION = 33. 36 MICRO-ZEC.
EXECUTION = =81. 32 MICRO-BEC.
EXECUTION = 1428 MICRO-BEC.
EXECUTION = 0. 00 MICRO-SEC.
EXECUTION = 39. 25 MICRO-BEC.
EXECUTION = 553. 42 MICRO~BEC.
EXECUTION = 70. 83 MICRO-GEC.
EXECUTION = 47. 91 MICRO-BEC.
EXECUTION = 0. 00 MICRO-SEC.
EXECUTION = 16%. 16 MICRG-SEC.

ALL DOMNE

TM-1095

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 ARND VAKX 11/780 Page 17
Efficiency comparisons of VaX PABCAL and VaAX FORTRAN

TABLE & {continued)

HAFEHERAAERAERAEAARF AR LR HEEF AR EAFAREPRERFFREREEERFER BB EEEER

LOGP1 = MIL :

LOOPZ = ARRAY REFERENCING IN~-LINE

L.OOGP3 = ARRAY REFERENCING. ARR&Y A PROCEDURE PARAMETER
LOOP4 = CONDITIONAL JUMPS

LOOPS = NIL

LOOPS& = INTEGER ARITHMETIC

LOOP7 = TRIG. FUNCTIONS

LODOP8 = PROCEDURE CALL

LOOPY = ARRAY REFEREMNCING VIA PROCEDURE

LOGP10= NIL

LOOP11= STANDARD FUNCTIONS
##ad BENCHMARK RESULTE mu#ux

OPTIMIZED FORTRAN:

BENCHMARK EXECUTION TIME IS5 0. 2307 MINUTES.
EXECUTION = 114613175 WHETSTONE INSTRUCTIONG/SEC.
ALL DONE

NON-DOPTIMIZED FORTRAN:

BENCHMARK EXECUTION TIME IB 0. 9650 MINUTES.
EXECUTION = 1105354 00 WHETSTONE INBTRUCTIONS/SEC.
ALL DONE

PASCAL.:

BENCHMARK EXECUTION TIME IS i. 5613 MINUTES.

EXECUTION = 683176, 75 WHETSTONE INSTRUCTIONS/SEC.
ALL DONE

TM-1095

PASCAL AND FORTRAN COMPARIBONS FOR THE PDF~11/34 AMND VAX 11/780 Page 18
Comments on wusing OMBI PASCaL for the PDP-11/34

V. Comments on using OMSI PASCAL for the PDP-11/34

Some of the following comments are brought up in the
OMSI PABCAL manual but are important encugh to be
re—iterated and expanded upon here.

The first thing to remember is to build OMBEI PABCAL
tasks with the FP and CP switches for floating point {we do
have floating point? and to make the task checkpointable
I+ one does nmnot make the task checkpointable one will
specificaliy have %o define the amount of dynamic heap
storage through the linker (one must have sysgened their RSX
system to include the Extend Task dirvective...as ours is).

The RESET and REWRITE procedures have three extra
arguments. Other than the #ile wariable argument thers are
file name., defauvlt file fields, and file size arguments.
This is not standard but it is & very good extension to OMGI
FASCAL for file definition.

The EXTERNAL directive is used for referencing other
OMSI PABCAL procedures and funcitions. NONPABCAL is used for
FORTRAN IV-PLUS and MACRUO routines. ‘

Since veal precision is determined and set at
initialization wof the main program; all external modules
must be compiled with the same rtesl precision (single ov
double) as the main program.

Procedures and functions from one compilation form a
single module and cannot be individually selected from the
module. {One should structure their modules wisely so that
most or only the procedures needed will be linked.

The fimal point to make about modules invélves the use
of global. Since this topic applys to both OMBEI PABCAL and
Vax PaBCal 1t will be covered below in the Vax PaSCal
section.

TM-1095

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780 Page 1%
Comments on using VAX PABCAL on the WAX 11/7780

VI. Comments on using VAX PASCAL on the VAX 11/780

Vax PABCAL and OMBI PABCAL allow global sections in
external modules te share the gleabal in the main program.
This makes all external modules appear as i1f they werse
compiled with the main program

One should avoid glohal variables in modules,
especially those modules which will be used by other people.
While global 1s most tempting te wvse as a method of
inter—-procedure communication within a2 module; it is
suggested that variables be passed as VAR parameters Lo
other procedures.

If one must use global in extermnal modules the type and
size must correspond to the global existing in the main
program. The use of these globals must be well understood
by both main program and the external module.

TM-1095

APPENDIX A&

TM-1095

Page A-2

PROGRAM PASFOR
¢ PARAMETER A=3.0,B=10. 0, C=20. 0,D=2. 0
BYTE PROMPT
DATA 4, B,C.D/5.0,10. 0,20.0,2. 0/
Z=4
X=A#B/C -
Y=A#D
i = (C-Bi+A
IF({X.GE. ¥} . AND. (Y. LT.C)) Z = (C+Bi-4A
DO 10 I=i,100
I=I-3. 0
A=X+1.0
10 CONTINUE
FROMPT = 77
CALL PROC(PROMPT}
MODE = 3 :
GOTO(L, 2,1, 2.3,3) » MODE+]
GOTO 4
i X=0.0
GOTO 4
¥=0. 0
GOTO 4
Z=0.0
CONTINUE
END

ny

£ L]

TM-1095

APPENDIX B

PROGRAM WHETSTONE{(QUTPUT, OUTFILE);
CONST MAXWORD = &5535;

START = O;

8T0P = 1;
TYPE RARRAY = ARRAYIL1. .41 OF REAL;
VAR OUTFILE: TEXT:

Xi; XEJ X3, X4, X, ¥, 2, T, Til T2 PEAL;
El: RARRAY:;
T, e Lo N1, NES N3 NG, NS, N, N7, NE, N NLIO, M1 1:
LOOP, JJ: INTEGER:
STIME, TTIME: REAL;
WALL, WALLQO: REAL;
FUNCTION WTIME(MODE: INTEGER 1}: REAL:
VAR ZERO: REaL:;
FUNCTIUON SECNDS{(VAR PARAPM:. REAL): REAL: NONPASCAL,
BEGIN
ZERD = 0. 0:
IF MODE <> (O THEN
BEGIN
Wali. = SECNDS{WaLLO});
WTIME WaLL;
WaLLO SECNDS{ZERDO);
END '
ELSE
BEGIN
WaLLD
WTIME
END;
END;
PROCEDURE PA(VAR E:RARRAY);
VAR J:o INTEGER;
BEGIN
Joo= oG
WHILE J<& DO
BEGIN
EL1D
EL21

o

SECNDS{(ZERG):
ZERD;

I h

(EL13+ELZI+EL3I-EL4T3%T:

{EC1J+EL2I-EL31+EL4T)#T;
EL3] {(EL1J-EL21+EL3I+EL47)T
EL40 {~ELLi1J+EL21+EI331+EL433/T5:
S o= Jel;

END;

END (# PROCEDURE PA #);

PROCEDURE PO:

BEGIN

E1LJ]

(I I O

E1LDKI;

EiLK] EL1L0L 3

E1LL] E1LJ1;
END (# PROCEDURE PG #);
PROCEDURE P3{ VAR X. Y. Z:REAL);
VAR Xi,Y1: REAL:

i

BEGIN
X1 = X
¥1 1= %,
X1 = T#{X1i+Y]1}:

INTEGER:

TM-1095

Page H-Z

TM-1095

Page -3

¥i = T&#{X1+¥1);
I = (X1+¥13/TE
END (# PROCEDURE P3 #);

PROCEDURE POUT(VAR N, J, K: INTEGER 5 VAR ¥i: X2: X3: X4: REaL);
BEGIN
WRITELN(OUTFILE. N7, 37, W 7. X1 124, X2 12: 4, X3: 12 4, X4: 12: 4%,
END (¥ PROCEDURE POUT %3,
BEGIN {3#% WHETSTONE. PAS =)
(% SPECIAL MODIFICATION OF REWRITE FOR OMSI PABCAL DNLY"‘ #*)
REWRITE(QUTPUT, ‘PaSBRPT, 7. DAT ')
REWRITE(UUTFILE.’PQHNHT’ ’.DAT’);
Wall = 0O O;
WaALLD = 0. 0;
{# IF LOOP = 10 THEN THIS CORRESFONDS TO THE EXECUTION OF
10 TIMES 1,000,000 WHETSTONE INSTRUCTIONS,)
LOOP .= 30;
STIME = WTIME{(START
T 1= . 4539975;
Ti 0. 50025;
T2 2, O;
{(# I = 10 CORRESFUONDS TO 1,000,000 WHETSTONE INBTRUCTIONS/MAJOR LOGP
3*}

i o#

: I = 10;

{# ESTABIISH MODULE EXECUTION TIME PARAMETERS #*)
Ni = O
N2 = 12%1;
N3 = 1491,
Ng .= 345%1;
NS =
Né& = 210%#1;
N7 = 32%1;
NEB = B99%];
NG = &léewl;
NIO = O
Nii = 93=1;

(# BEGINNING OF MAJOR LOOP
WE HAVE THIS MAJDOR LOOP RATHER THAN JUSING A BIGGER I BECAUSBE
A4 LARGER I (GREATER THAN 36) WILL OVERFLOW ON A 16 BIT MACHINE =)
FOR JJ:=1 TO LOOF DO

BEGIN
(% MODULE 1 : SIMPLE IDENTIFIERS %)

X1 := 1.0

X2 = -1 G

3 = -1,

X4 = -1.0;

FDR I:=1 TO N1 DO

BEGIN
X1 o= XIS+ E3-K4 % T

12 o= {X1+X2-X3+X4)#T;
X3 .= xXi A2+ T+EG I %#T;
X4 .= AI+X2+X3+X4 8T

END (* MDDULE 1 #3;
IF (JJ=L00F)
THEN

TM-1095

Fage B4

POUT (NL, N1 N, X3, X3, X3, X435
{(# MODULE 2 : ARRAY ELEMENTS %)

E1013 = 1.3

E1f21 1= —-1. O

Eif31 = —-1.Q;

Eif4]d = -1.0;

FOR 1.=1 TO N2 DO

BEGIN

Eil1] = (E1DI1J+EILZI+EILBI-ELIL43)*T;
E1l21 = (EIL1I+EI[ZI-EIL3I+EIT4T)%T;
Eif3] = (EiliJI-EI1L2I+EIL3I+ELL43)#T;
Eil4] = (~E1L1J+EIL21+EL1L3I+EIL41)%T;

END (% MDDULE & #);
IF (JJ=L00R)
THEN
POUTINZ, NG N2, ELL13, E1LRI.EIL33 EL1D43);
(% MODULE 3 : ARRAY AS PARAMETER #)
FOR I:=1 TO N3 DO
PAl{EL);
(# END MODULE 3 #)
IF (JJ=L00F)
THEN
POUT(NG N2, N2, EID13. E1023, E1LD33, EL1T41);
(¥ MODULE 4 : CONDITIONAL JUMPS #3

oor=oL;
FOR I:=1 TO N4 DO
BEGIN \
IR =i
THERN
o o= e
ELSE
\,j ::.3;
IF J>2
THERN
S o= D
EiLBE
Jor= oL
IF J41
THEN ,
W+ o=
ELSE
J o= Qs

END (# MODULE 4 #);
IF {(Ji=L00R)
THEN
POUTI(NG: J, J, X1, K2, 13, X4
(% MODULE 5 . OMITTED #)
(% MODULE & : INTEGER ARITHMETIC =)
W i;
K =i
Lo 3
FOR I:=1 TO MNé& DO
BEGIN
Worm R IK-J YR (LK)

oo

Koo= Ll {L-Ji#K;
Lovs (L-Riw{Kh+d);
EifL-11 = J+lh+l;
E1TK-13 = JxRsl;

END (% MODULE & #);
iF {JJ=L0O0P)
THEN

{(# MODULE 7 : TRIG FUNCTIDONG =)
(0. 5

LI

: 0. 5;

Or I:=1 TO N7 DO
BEGIN

X o=

X
Y
E

T*ARCTAN(TQ%SIN{XS%CDS{K)X(CBS(X+Y)+CGS(X-Y)*1.0));

Y o=

T*ARCTéN(TQ%SIN(Y5%SB$(V)X(CGS(X+V}+CGS(X*Y}*1.G))s

END (% MODULE 7 #);
IF {(JJ=L00F)
THEN
POUTINTG, J. K, X X Y. ¥)
(# MODULE 8 : PROCEDURE CALLS #)

X oowm 1.0

Y = 1.0;

Z = 1.0

FOR I:=1 TO NE DO
P3(Y, Y, 23

{# END MODULE B %)
IF (JJ=L00GF}
THEN
POUTNEB, LK. X, ¥, 2,23
{# MODDULE 9 : ARRAY REFERENCES %)

Joo=o1

K o= 2

L= 3;

E1013 = 1.0;

ELIL2] = 2.0

Eif33 = 3. O;

FOR I:=1 TO N% DO
PO;

(# END MODULE 9 #)
IF (JJ=L00P)
THEN

POUT(NY, J, K, EID1 1, E1E23, E1T33, ELL43)

{# MODULE 10’: INTEGER ARITHMETIC *)

J o= 2
K= 3
FOR I.=1 TO NiQ DO
BEGIN
Joo=m SR
K o= Jidg
o= R
KR o= K—-Jd—-k

END (% MODULE 10 %);

POUT(NG, J, K, EIT1T, ELILR2I.ELLBI. ELLD4T);

TM-1095
Page B-D

TM-1095
Page B-é&

IF (JJ=L0O0P)
THEN
POUTI{NILIO, J, K, X1, X2, X3: X4);
{(# MODULE 11 : STANDARD FUNCTIONE)
X := 0.75;
FOR I:=1 TO Nii BO
X o= SART(EXPILN{XY/TiY;
{(# END MODULE 11 #)
IF (J=L00P)
THEN
FOUT{NIL, J, K, X X, %, X0

END;
TTIME := WTIME(STOP);
STIME := TTIME;
TTIME = TTIME/&0. O
STIME = LOOPw®1. OE&6/STIME;

WRITELN(’ BENCHMARK EXECUTIONM TIME IS5 ¢ TTIME:8:4. 7 MINUTES. ‘);
WRITELN(EXECUTION = 7, ETIME: 11:2, " WHETSTONE INSTRUCTIONS/SEC. 7);
WRITELN(’ ALL DONE ’'J:

END. '

TM-1095

AFPENDIX C

TM-1095
Page -2

PROGRAM FORPAS;

CONS

TYPE

VAR

T
A= 5
B = 10.0;
C = 20.0;
D=2 0
LINCLUDE ‘SYSSLIBRARY: LIBDEF. PAS/NOLIST

WORDLEN = (.. 4&55835;
WORD = PACKED RECORD
WORDTYPE: WORDLEN

END;
STRINGLEN = 1..7Z;
BTRING = PACKED ARRAY [STRINGLENI OF CHAR;
MESSGLEN = 1.. 12
MESSAGE = PACKED ARRAY [MESLELENT OF CHAR:

X, Y, Z: REAL;

I: INTEGER:

MODE: INTEGER;
COMMANDLINE: STRING:
8TATUS: INTEGER:
COMLEN: WORD:
PROMPT: HMESSAGE:

FUNCTION LIBSCETFOREIGN{LETRESCRE COM: BTRING;
AETDESCR PREMPT: MESSAGE;
VAR LEN: WORD) : INTEGER:
EXTERN;
PROCEDURE LIB$STOP(XLIMMED ERROR: INTEGER:
EXTERN;
BEGIN
L = A
i = A#B/C~Z;
Y = A#xD;
IF (X = ¥) AND (¥ <0
THEN
Z = (C+Bi-A
ELBE
Z = {C-DBir+a;
I = 0
WHILE 1 < 20 DO
BEGIN
I = I+1;
L o= I42 0y
END;
FOR I:=1 TO 100 DO
BEGIN
72 = 3. O
X 1= X+1.5;
END;
PROMPT = ‘FILE NamMES:
STATUS = LIBSGETFOREIGON(COMMANDL INE, PROMPT, COMLEN?;

I

F 8TATUS < LIB$NORMAL
THEN

TM-1095

Page C-3

LIB$ETOP (STATUG)

MODE = T

CABE MODE OF
0,8 ¥ = 0.0;
1.3 ¥ = 0.0
4,5 Z = 0. 0;

END;

END.

TM-1095

APPENDIX D

[I (]

1303

T

Ay

T3 2

TM-1095

DIMENSION E1(4)
COMMON T, T1. T2, ELl. J K, L

BET NTTY FOR TERMINAL COUTPUT DEVICE NUMBER
NTTY = 7

IF LOOF = 10 THEN THIS CORRESPONDS TO THE EXECUTION OF
10 TIMES 1,000,000 WHETSTONE INSTRUCTIONS.

LOOP = &4

STIME = BTIME(O)
T = 0. 499975

Ti = 0. 50025

T2 = 2.0

I = 10 CORRESPONDS TO 1,000, 000 WHETSTONE INSTRUCTIONS/MAJOR LOOP
I = 10

ESTABLIBH MODULE EXECUTION TIME PARAMETERS

Ni = O

N2 = 121
N3 = 14%]
N4 = 345%]1
NS = O

N& = 210%1
N7 = 321
NB = 8991
N = &16+%1
N1O = O
Nil = 93#]1

BEGINNING OF MAJOR LOOP

WE HAVE THIS MaJOR LOOP RATHER THAN UBING & BIGGER I BECAUBE

A LARGER I (GREATER THAN 3&6) WILL DVERFLOW ON A 16 BIT MACHINE.
DO 500 JJ = 1, L00OP

BEGINNING OF MODULE 1. SIMPLE IDENTIFIERS

X1 = 1.0
X2z = —-1. 0
3 =-1.0
X4 = -1, &

IF(NL)Y 19, 19,11

X1 = (X1+X2+X3-X4)%T
2 = {(X1+X2-X3+X4 8T
X3 = (X1-X2+X3+X45#7
X4 = (~XI+XT+XB+E45 8T

18 CONTINUE

i

T3y

21

43
44
45

44
47
411
412

48
49

e ReRsNeRe R

CONT INUE
IF(JJ EQ. LOOP)Y Call

BEGINNING OF MODULE

Ei{(l) = 1.0

Ei(z2) = ~-1.0

E1(3) = -1.0

Ei{4} = ~-1.0

IF(NZ) 29,29, 21

DO 28 1 = 1,N2.1
El1{1) = (Ei(
Eid2) = (Ei(
E1(3) = (Ei{
Ei1d4) = (-E}

CONTINUE

CONTINUE

IF(JJ. EG. LOOP)Y CaALL
BEGINMING OF MODULE.

IF(N3) 3%, 39, 31

DO 38 I = 1,N3,1
CaLl PA(EL)

CONT INUE

IF(JJEQ. LDOP) CALL

BEGINNING OF MODULE

oJ i

IF{NG) 4%, 4%, 41

DO 48 I = 1,N4, 1
IF{J-1:
W =

0 TO 44

WJ 3

IF(J-2) 46. 4

J =0

c0 TO 47

o i

IF(J-13) 411,
o

&0 TO 48
+J

43, 4

CONTINUE
CONT INUE

IFGAG EQ LOOP)Y CALL

-

THERE I5 NO MODULE 5

BEGINNING OF MODULE

J i

TM-1095
Page D-3

POUT(NL, NI, NL, X1, X2, X3, £4)

2.

ARRAY ELEMENTS

PDIFEII+EL I -EL{4))T
PI+EI2Y-EL1(OY+EL {40) #T
D-EL(2)+EL(3I+EL(4) 3T
(OI+EL(2I+EI{(3)+RELI(4) 3 #T

POUTING, NG N2LEL(L L, ELIZ2), EL(3). EL1(4))

3, ARRAY A5 & PARAMETER

POUT{NG: N2, N2, EL(L13, EL(20, EL{3), E1{4})

4, CONDITIONAL JUMPES

=, 43

b, 45

412, 412
i

0

POUTI(NG, J, J, X1, X2 X3, X4)

&, INTEGER ARITHMETIC

&1

o O
<1 0

LS I

W

Do NN

91
78
93

TM-1095

Page D4

W= 2

L =3

IFING) &9, 69, 61

PO &8 I = 1,N& 1
J o= JK-Jiw (LK)
o= L#j-{l-JisK
L= {L-Kl)e{h+)
Eil{l—-1}) = J+RA+L
Ei1{k—-1) = J#lKsl

CONTINUE

CONT INUE

IF(JJ. EQ. LOOP) CALL POUT(N&: J. K, EL1{1), E1(2),E1(3),E1{4))
BEGINNING 0OF MODULE 7, TRIG. FUNCTIONS

X 0.5

¥ 0.5

IF(N7) 79,79, 71

DO 78 I = 1,N7.1

THATAN(T2#SIN(X) #CO5(X) /7 (COS(X+Y)+COB(X~Y)~1. 032
T#ATAN(TZ#EIN(Y)I#CO5(Y) / (COB{(X+Y)+CUB(X~Y)I~1. O))

X
Y
CONTINUE
CONTINUE
IFOJJ EQ LDOP) CALL POUTINT, J, K, X, X, Y, ¥)

BEGINNING OF MODULE 8, PROCEDURE Cal.Ls

i.0

1.0

1.0

IF(NB)Y 89,89, 81

DO BB I = 1:,NB,1

Call P3(X,¥:Z}

CONTINUE

IF(JJ EQ LDOP)Y CALL POUTING, 3 K, X, ¥ 7, 20

L S
I

BEGINNING OF MODULE 9, ARRAY REFERENCES

J
®
L.
E1(1:
EL1(2}
E1(3)
IF(NgY @
Bo 98 1

Call PO

I
L3 By e

i

B

AN VR
e OO D

.91
P N, 1

¥

"CONT INUE

IF(JJ. EQ. LODP)Y CALL POUT(NT, J, K, E1 (1), E1{2), E1(3), E1(4)
BEGINNING OF MODULE 10, INTEGER ARITHMETIC

J
)

2

Eot]

3

HoH

i

i
i

C

01

08
07

IF{NIG) 109, 109, 101

DO 10B I = 1,WNiG, 1
o= R

K o= J+K

Jd o= Ke-d

K=K —J-J
CONTINUE

CONTINUE

IFGJUEQ LOOP) CaLL POUTINLIO, J, K, X1, X2, X3: X4)

C BEGINNING OF MODULE 11, STANDARD FUNCTIONS
C

i
i
i

CTOOUGO0

10006 FORMAT(° BENCHMARK EXECUTION TIME IS5 ‘.FB8. 4,/ MINUTES,

ii
ig

i

oo

X =075

IF(NLILY 119,119,111
PO 118 1 = 1,N1i, 1
X = GORT{EXP(ALDG{X)/T1)
CONTINUE

IF{JJ. EQ. LOOP) CaLL POUTINLIL. J, K, X, X, X, X2

THIS I8 THE END OF THE MaJOR LOOP
CONTINUE

NOW PRINT THE EXECUTION TIME

TTIME = BTIME(L)

ETIME = TTIME

TTIME = TTIME/&D. O

STIME = LOOP#1. OE&/GTIME

WRITE(NTTY. 1000) TTIME

WRITE(NTTY, 1001) STIME

1001 FORMAT(/ EXECUTION = ‘,Fii. 2, ' WHETSTONE
INETRUCTIONS/SEC. /)

WRITE(NTTY, 10027

1002 FORMAT(9H alLL DONE, /)

LN

BTOF

END

SUBROUTINE PA(ED
COMMON T, T1, 72
DIMENGION E(4)

J =0

CONT INUE

Ei{l) = (E(L1)+E(2)+E{(3)-E{4)1 %7
E{2) = (E(LI+E(2)-E(3)+E(4)) #T
E{3) = (E{1)~-E(2)+E(3I+E(4) 1T
E{d4) = {(-E{I1)+E(2)+E{3)+E(41)/T2
o=]

IF{J—-6) 1.2.2

CONTINUE

RETURN

END

SUBROUTINE PO
COMMON T, 71.TZ,E1(4): LK, L

.

oo

Ei(J) = E1{K)
E1{K) = E1{L)
Ei1{l) = E1{d)
RETURN

END

SUBROUTINE P3{X. Y, 1)
COMMON T, T1, T2

X1 = X

¥i =Y

X1 = T#{X1+¥1)
Yi = Te{dl+¥Y1)
Z = (Xi+¥11/72
RETURN

END

SUBROUTINE POUTIN, LK, X1, X2, X3 X4
WRITE(&: 13 N,oJ, K X1, X2, X3, X4
FORMAT(1H . 317, 4E12. 45

RETURN

END

TM-1095

Page D&

TM-1095

FPage D-7

i5

Distribution

ACNET Design Group
Controls Sofitware Staff

R. Ducar ME367
W. Knopt ME307
J. Zagel ME307
J. Tinsley MB306
file _

J.F. Bartlett MB2Z22
D. Ritchie ME120

amw. USRSDISK: [WALLER. TEXTIFABREPORT. RNO

